Demand shaping through load shedding and shifting using day-ahead and real-time prices

Ioannis Akrotirianakis

Research Scientist

Siemens Corporation, Corporate Technology, Princeton, NJ

Joint work with:

Amit Chakraborty (Siemens) and Rodrigo Carrasco (Columbia University)

Overview

- Demand-Response
- System description
- Problem formulation
- Numerical results

Demand-Response

- Demand-Response enables automatic curtailment of electricity
- It is used when demand is expected to exceed the normal capacity
- Consumers agree to reduce the use of A/C, water pumps, etc, during critical time intervals of very hot days in summer
- This reduction generates extra capacity, which is used to meet peak demand
- In return consumers receive certain incentives/benefits proportional to the loads they shed
- Reduces the risk of brownouts and blackouts
- Can lower electricity bills
- May reduce the emissions from fossil-based fired power plants

System description

- We consider three types of electricity load:
 - 1. Sheddable load, 2. Shiftable load, 3. Non-moveable load
- Sheddable load example: increase the target temperature of A/C
- Shiftable load example: Washing machine rescheduling time
- Non-moveable load example: Refrigerators running at the lowest viable temperature
- q_{it} : total load of user i at time t
- $q_{it}^{(d)}$: sheddable load
- $q_{it}^{(s)}$: shiftable load
- $q_{it}^{(n)}$: non-moveable load

$$q_{it} = q_{it}^{(d)} + q_{it}^{(s)} + q_{it}^{(n)}$$

System description (cont)

- y_{it} : actual sheddable load $(y_{it} \leq q_{it}^{(d)})$
- $D_i(y_{it})$: discomfort of customer when shedding load of y_{it})
- $p_{it}^{(d)}$: incentive price per unit of load shed
- $[\alpha_{ij}, \beta_{ij}]$: time interval of use for appliance j
- x_{ijt} : consumption of appliance j $(x_{ijt} = 0, \forall t \notin [\alpha_{ij}, \beta_{ij}])$
- $B_{it}^f(q)$: billing structure for shiftable and sheddable loads
- $B_{it}^s(q)$: billing structure for non-moveable loads
- $C_t^{dam}(q)$: cost of purchasing energy in day-ahead market
- $C_t^{rtm}(q)$: cost of purchasing energy in real-time market

Problem formulation

Utility's problem:

$$\max_{x,y,q_t^{(n)}} \qquad \sum_{t} \sum_{i} (B_{it} - p_t^{(d)} y_{it} - C_t)
s.t. \qquad q_{it}^{(s)} = \sum_{j} x_{ijt}, \forall t, i
\qquad \sum_{t} x_{ijt} = x_{ij}^{max}, \forall i, j
\qquad x_{ijt} = 0, \forall t \notin [\alpha_{ij}, \beta_{ij}] \text{ and } \forall i, j
\leq y_{it} \leq q_{it}^{(d)}, \forall t, i
\qquad x_{ijt}^{min} \leq x_{ijt} \leq x_{ijt}^{max}, \forall i, j, t$$

$$C_t^f(q) = \min \left\{ C_t^{dam}(q), C_t^{rtm}(q) \right\}$$

$$C_t = C_t^f(Q_t^{(d)} - Y_t + Q_t^{(n)pred}) + C_t^{rtm}(Q_t^{(n)real} - Q_t^{(n)pred})$$

$$B_{it} = B^f(q_{it}^{(s)} + q_{it}^{(d)} - y_{it}) + B_t^s(q_{it}^{(n)})$$

Problem formulation (cont)

Consumer's problem:

$$\min_{x,y} \quad B_{it} + D_{it}(y_{it}) - p_{it}^{(d)}y_{it}$$

$$s.t. \quad q_{it}^{(s)} = \sum_{j} x_{ijt}, \forall t$$

$$\sum_{t} x_{ijt} = x_{ij}^{max}, \forall j$$

$$x_{ijt} = 0, \forall t \notin [\alpha_{ij}, \beta_{ij}] \text{ and } \forall j$$

$$0 \le y_{it} \le q_{it}^{(d)}, \forall t$$

$$x_{ijt}^{min} \le x_{ijt} \le x_{ijt}^{max}, \forall j, t$$

Consumers try to minimize their losses

The algorithm alternates between solutions of the Utility problem and the Consumer problem, until convergence is achieved.

Numerical results

Data generation:

- We used 18 months of hourly electricity

 consumption data obtained from residential homes in Texas
- We generated demand data for n = 1000 consumers
- We randomly split the loads of each consumer to shiftable, shedable and non-moveable for each hour
- We obtained DAM and RTM energy prices from ERCOT
- We consider the discomfort function $D_i(y_{it}) = a_{it}y_{it}^2 + b^f y_{it}$
- <u>Base case</u>: Utility will purchase all forecasted energy from DAM, and the remaining from RTM.

Numerical results (cont)

Base case

Total Procurement Cost: \$406, 577.11

Flat Electricity Rate to Consumers: \$29.80/unit

Algorithmic solution

Total Procurement Cost: \$356,750.68

Improvement: 12.2551%

Hourly Rate to Consumers:

Time	Cost (\$)						
01:00	27.1531	07:00	32.2719	13:00	31.6678	19:00	46.4729
02:00	27.1531	08:00	37.2521	14:00	37.2501	20:00	32.1254
03:00	27.1531	09:00	36.6841	15:00	37.1531	21:00	24.5637
04:00	27.1531	10:00	35.5590	16:00	37.1531	22:00	23.9760
05:00	27.1531	11:00	35.8228	17:00	37.1531	23:00	24.3407
06:00	24.7797	12:00	34.6187	18:00	37.1531	24:00	23.1531

Numerical results (cont)

Demand profile without Demand-Response \longrightarrow

Demand profile using our Demand-Response algorithm \longrightarrow

